

Medizinische Fakultät

<u>PRospective Evaluation of clinical parameters anD Initial cerebral</u> <u>CT for the prediction of Malignant Media Infarction</u> (PREDICT MMI) - first interim analysis

Alhuda Dabbagh¹, Florian Welle¹, Janine Mielke¹, Max Wawrzyniak¹, Cordula Scherlach², Karl-Titus Hoffmann², Johann Pelz¹ 1 Department of Neurology, University Hospital Leipzig; 2 Institute of Neuroradiology, University Hospital Leipzig

Background

The early identification of patients at high risk of developing space-occupying cerebral infarction (synonym: malignant middle cerebral artery infarction, MMI) would

Retrospective overview

prediction model	parameters		
M0 "NWU-only"	Net water uptake (NWU)		
M1 "CT-only"	M0 + volume of cerebrospinal fluid (CSF)		
M2 "basic clinic"	M1 + clinical data		
	(age, NIHSS, recanalization success (TICI-Score), occlusion localisation)		
M3 "advanced	M2 + laboratary paramaters		
clinic"	(urea, creatinine, hematocrit, serum sodium, serum glucose)		

enable the targeted application of therapies aimed at reducing cerebral edema.

Solution A set of the set of t occurrence of MMI, utilizing CT-based parameters in combination with clinical data (sensitivity: 78.57%, specificity: 79.45%, area under the curve [AUC]: 0.86).

Aim

The aim of this study was to validate the predictive model (combining CT-based) parameters with clinical characteristics) for the development of malignant middle cerebral artery infarction (MMI) in patients with large vessel occlusion (LVO).

Figure 1: Aim: prediction of MMI or non-MMI

Methods

VIHSS	Ø17

Middle cerebral

artery (MCA)

Internal carotid

artery (ICA)

Common

carotid artery

(CCA)

Results

The prospective validation of our model confirms its accuracy in predicting MMI in patients with LVO.

Figure 3: At a probability cut-off of $\geq 80\%$, 15 out of 18 patients with MMI and 83 out of 89 patients without MMI were correctly predicted.

i.v. thrombolysis	40 (37,4%)			
thrombectomy	84 (78,5%)			
Tici-Score ≥ 2b	79 (73,8%)			
affected side: right	49 (45,8%)			
occlusion location	ICA 12 (11,2%) Carotis-T 23 (21,5%) MCA-M1 72 (67,3%)			

 Table 1: Clinical data. Absolute number (in %)

Figure 2: Occlusion localisation included in this study

Conclusion

Advantage: The model offers simple and rapid app-based applicability, utilizing data already available at the time of admission to the stroke unit or intensive care unit.

Future Directions: Further validation is planned in a prospective multicenter cohort, alongside the establishment of its clinical applicability.

- Prädiktion		– 🗆 X			
rsion: 1.0.3 n: run_04062023 odel:model_2_5_clinical_basic_loc : Check lusion	Malignant Transformation Risk Assesment (MTRA)	Model Settings	0	last seen well < 24 h	
			\sim		

Figure 4: Receiver-Operator (ROC)-curve of the predicted risk depending on the outcome. The model exhibits a sensitivity of 83.3%, a specificity of 93.2%, and an AUC of 0.965.

• affected site R/L o occlusion in: CCA/ICA/CarT/M1 1. NIHSS:... recanalisation: yes/no

Figure 5: Malignant Transformation Risk Assessment (MTRA) – semi-automatic algorithm for prediction of space-occupying brain infarction.

> The authors declare no conflict of interest. contact: alhuda.dabbagh@medizin.uni-leipzig.de