10th Annual Symposium
Physics of Cancer
Leipzig, Germany
September 25-27, 2019
Invited Talk
3D shape transitions of active contractile sheets
Anne Bernheim
Bernheim Lab, Chemical Engineering Department, Ben-Gurion University of the Negev, Yitzhack I. Rager Blvd, 84105, Be'er Sheva Israel
Contact:  | Website
Shape transitions in developing organisms can be driven by active stresses, notably, active contractility generated by myosin motors. The mechanisms generating tissue folding are typically studied in epithelia. There, the interaction between cells is also coupled to an elastic substrate, presenting a major difficulty for studying contraction induced folding. Here we study the contraction and buckling of active, initially homogeneous, thin elastic actomyosin networks isolated from bounding surfaces. The network behaves as a poroelastic material, where a flow of fluid is generated during contraction. Contraction starts at the system boundaries, proceeds into the bulk, and eventually leads to spontaneous buckling of the sheet at the periphery. The buckling instability resulted from system self-organization and from the spontaneous emergence of density gradients driven by the active contractility. Our system offers a well-controlled way to study mechanically induced, spontaneous shape transitions in active matter (Ideses Nat. Comm. 2018).
University of Leipzig  |  Faculty of Physics and Earth Sciences  |  Peter Debye Institute  |  Soft Matter Physics Division
© Soft Matter Physics Division, University of Leipzig. Designed and created by sp design. Imprint & Disclaimer